by

S
EZKTHY

VETENSKAP
28 OCH KONST 2%

s

DEGREE PROJECT IN TECHNOLOGY,
FIRST CYCLE, 15 CREDITS

STOCKHOLM, SWEDEN 2019

Explicit Symplectic Integrators for
Non-Separable Hamiltonians in
Molecular Dynamics

ANNA LASSEN
JONAS CONNERYD

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ENGINEERING SCIENCES

by

S
EZKTHY

VETENSKAP
28 OCH KONST 2%

s

DEGREE PROJECT IN TEKNIK,
FIRST CYCLE, 15 CREDITS

STOCKHOLM, SWEDEN 2019

Explicita symplektiska integratorer
for icke-separabla Hamiltonianer i
molekyldynamik

ANNA LASSEN
JONAS CONNERYD

KTH ROYAL INSTITUTE OF TECHNOLOGY
SKOLAN FOR TEKNIKVETENSKAP

oy

By,
$KTHS

VETENSKAP
39 OCH KONST 9%

e

Theoretical Physics

Explicit Symplectic Integrators for Non-Separable
Hamiltonians in Molecular Dynamics

Jonas Conneryd, Anna Lassen
conneryd@kth.se
alassen@kth.se
SA114X Degree Project in Engineering Physics, First Level
Department of Theoretical Physics
Royal Institute of Technology (KTH)
Supervisor: Anatoly Belonoshko

3 juni 2019

mailto:conneryd@kth.se
mailto:alassen@kth.se

Abstract

In molecular dynamics, mathematical models of metallic systems should in general have
the temperature of the system as a dependent variable [1]. In particular, the potential
energy term of the Hamiltonian function of the interaction model should be dependent on
temperature in addition to interparticular distances. This puts the Hamiltonian function
on a form which is generally non-separable. Conventional explicit numerical methods
which are symplectic when used to integrate the equations of motion of systems with
separable Hamiltonians are not in general symplectic when used to integrate the equations
of motion of systems with a non-separable Hamiltonian. Hence, an integrator which
sustains symplecticity when used in a system with non-separable Hamiltonian is sought.
A family of explicit integrators which are symplectic when integrating systems with
a non-separable Hamiltonian are shown to exhibit similar or superior performance to
the Velocity Verlet and fourth-order Runge-Kutta schemes, albeit with the drawback
of numerical instability when used on a system where forces depend exponentially on
the inverted interparticular distances. To the knowledge of the authors, this study is
the first time this family of integrators is applied in the context of molecular dynamics.
The results of this study provide a first indication that a comprehensive solution to
the problem of integrating the equations of motion of a system with a non-separable
Hamiltonian explicitly and symplectically is not provided by the considered family of
integrators. However, further investigations into using this family of integrators in other
molecular dynamics systems than those investigated here are needed to provide a more
definitive conclusion.

Sammanfattning

Inom molekyldynamik bér modeller av metalliska system i allméanhet ha systemets tempe-
ratur som en beroende variabel [1]. I synnerhet bor termen i systemets Hamiltonian som
representerar potentiell energi utéver det interpartikuldra avstandet dven vara beroende
av temperatur. Detta temperaturberoende gor i allménhet Hamiltonianen icke-separabel.
Konventionella explicita numeriska metoder som ar symplektiska da de anviands pa sy-
stem med separabel Hamiltonian &r i allménhet inte symplektiska da de anvands i system
med icke-separabel Hamiltonian. Pa grund av detta eftersoks en integrator som behaller
symplekticitet da den anviands i system med en icke-separabel Hamiltonian. En sam-
ling integratorer som ar symplektiska dven da de anvéands pa system med icke-separabel
Hamiltonian visas prestera lika bra eller béttre &n de konventionella Velocity Verlet-
och fjarde ordningens Runge Kutta-integratorerna, med nackdelen att de undersokta
integratorerna uppvisar numerisk instabilitet da de tillimpas pa system dér de inter-
partikuldra krafterna beror exponentiellt pa inverterade interpartikulédra avstand. Till
forfattarnas kinnedom &r denna studie den forsta tillimpningen av de undersckta integ-
ratorerna inom molekyldynamik. Resultaten i denna studie ger en fingervisning om att
de undersokta integratorerna inte ger en 6vergripande 16sning pa problemet att integrera
rorelseekvationerna hos ett system med icke-separabel Hamiltonian. Emellertid behovs
vidare undersokningar som anviander den undersokta samlingen av integratorer i andra
system i molekyldynamik dn de som undersoks i denna studie for att ge en mer definitiv
slutsats.

Acknowledgements

The authors would like to thank our advisor Anatoly Belonoshko for his continuing
support and guidance during this project.

Contents

1 Introduction

2 Background Material

2.1

2.2

Molecular dynamicso
2.1.1 Introductiono
2.1.2 Hamiltonian systems
2.1.3 Separable and non-separable Hamiltonians
2.1.4 Periodic boundary conditions
2.1.5 Conserved quantities
Symplectic integrators and Hamiltonian mechanics
2.2.1 Introduction Lo
2.2.2 Phasespace
2.2.3 Symplectic transformations
2.2.4 Properties of symplectic maps in Hamiltonian mechanics
2.2.5 Integrators and symplectic maps.
2.2.6 Extended phase space
2.2.7 Explicit and implicit integrators
2.2.8 Note on symplectic integrators for separable Hamiltonians .
The Tao paper

2.3
3 Investigation

3.1 Problem

3.2 Model and physics
3.2.1 Kinetic temperature L
3.2.2 Temperature-dependent spring potential
3.2.3 Temperature-dependent Lennard-Jones

3.3 Simulation
3.3.1 Temperature-dependent spring constant
3.3.2 Temperature-dependent Lennard-Jones potential

3.4 Results. e
3.4.1 Temperature-dependent spring
3.4.2 Temperature-dependent Lennard-Jones potential
3.4.3 General takeaways

3.5 Discussion

3.5.1 Temperature-dependent spring potential

0 00 0O CO O O Ut Ut Ut SN

— = =
NN = OO

12

3.5.2 Temperature-dependent Lennard-Jones potential 25

3.5.3 Selecting the parameter w 25

3.5.4 Choice of other parameters 26

3.5.5 Sensitivity tostep size 26

3.5.6 Cumbersome implementation 26

3.5.7 Numerical speed 26

4 Summary and Conclusions 27
4.1 Temperature-dependent spring potential 27
4.2 Temperature-dependent Lennard-Jones potential 27

5 Appendix 1: Python code used in the simulations 30
5.1 Temperature-dependent spring simulation 30
5.2 Lennard-Jones simulation 0oL 39

Chapter 1

Introduction

In a short expository paper [1], G. Ackland states that for systems involving metals, it is
desirable to eliminate the explicit treatment of electronic degrees of freedom, since doing
so yields computational advantages of around six orders of magnitude. Ackland states
that according to Sommerfeld theory, there exists a temperature-dependent contribution
to the free electron energy in a metal, and as a result, any potential that eliminates ex-
plicit treatment of electronic degrees of freedom should be temperature dependent. This
naturally leads to the question of which numerical methods are appropriate for integrat-
ing a system in which the interparticular potential is temperature-dependent. Desirable
properties for such an integrator are, among others, it being explicit and symplectic.
However, temperature dependence in an interparticular potential puts it on a form such
that many properties of conventional integrators, such as symplecticity, may be lost when
applied to such a potential. This report considers integrators which sustain symplectic-
ity of a certain form when used to integrate temperature-dependent potentials and their
performance compared to conventional integrators.

Chapter 2

Background Material

2.1. Molecular dynamics

2.1.1. Introduction

Molecular dynamics (MD) is a computer simulation method that is used to study the
dynamics of atoms and molecules under a given set of interactions between them. Math-
ematically (and in reality, numerically), this is done by solving Newton’s equations of
motion using the Hamiltonian formalism, usually with the particles being approximated
as point-like.

2.1.2. Hamiltonian systems

Consider a system of N point-like particles and denote the position and momentum of the
1:th particle by ¢; and p; respectively. Furthermore, let ¢ denote the vector of respective
positions of all particles in the system and let p denote the vector of respective momenta
of all particles in the system. Then Newton’s equations take the following form:

d*q; .
mn =F;i=1,...,N, (2.1)
or alternatively
dt (2] AR *

In the case where the F; of (2.1) have no explicit time dependence, that is, F; = F;(p, q),
Newton’s equations of motion are invariant under time translation, and so Noether’s
theorem implies that there should exist a corresponding quantity in the system that is
conserved in time [2]. This quantity turns out to be the Hamiltonian H(p,q), which for
an isolated system (which is the only type of system that is considered in this report)
corresponds to the total energy of the system [4]. Then

H=T+V, (2.3)

where T" denotes kinetic energy and V' denotes potential energy. The equations of motion
of a system can be obtained through the Hamiltonian via Hamilton’s equations [4]

o0H OH
p 9 =% (2.4)
For a conservative force it turns out that
oH ov
F,=— = _ 2.5
0g; dq; ()

since kinetic energy is independent of position [4].
2.1.3. Separable and non-separable Hamiltonians

In many systems of interest to scientists, the Hamiltonian can be written in the form

H(p,q) =T(p) +V(q). (2.6)

If this is the case, the Hamiltonian of the system is said to be separable [6]. If the
potential of a system also depends on the momenta of the particles and therefore cannot
be put on the form (2.6), the Hamiltonian is said to be non-separable.

2.1.4. Periodic boundary conditions

When simulating a material using Molecular dynamics, the particles are put in a closed
“container” with volume V' to keep parameters such as particle density constant. In this
report, the container consists of a three-dimensional cube with sides L. Often, due to
computational constraints, the number of atoms in the system is so small that surface
effects on the container walls dominate the overall behavior of the system. To remove
surface effects, the approach often taken is to impose periodic boundary conditions (pbc)
on the boundaries of the container. The process is described by J.M. Haile in [4] as
follows: The volume V' is denoted as the primary cell and is imagined to be surrounded
by exact replicas of itself, denoted image cells, all containing the same number of atoms
in the same positions relative to the respective image cell reference frames. Thus, all
particles in the primary cell have an image in every image cell. The process is illustrated
in 2 dimensions in Figure 2.1.

L

Figure 2.1: The primary cell is surrounded by image cells in which each image particle has
the same position and momentum as in the original cell relative to each respective image cell’s
reference frame.

Since the momenta of the images are exactly the momenta of the particle in the primary
cell, when a particle leaves the primary cell a new particle will enter it on the opposite
boundary according to Figure 2.2.

L

Figure 2.2: When a particle leaves the primary cell, its image will enter it on the opposite
boundary.

The physical intuition behind pbc is assuming the volume V' is a very small part of the
whole material being investigated.

2.1.5. Conserved quantities

In [4], J.M. Haile outlines the quantities whose conservation is characteristic of a system
of N particles with positions ¢;,2 = 1,... N and momenta p;,i = 1,..., N, and imposed
periodic poundary conditions. The conserved quantities which are considered in this
report are:

e Total energy, defined as
E=T+V.

e Total linear momentum, defined as
N
P=>
i=1
e Total angular momentum, defined as
N
L= Z qi X Pi-
i=1

However, in reality, angular momentum is not a reliable metric of algorithm performance
in molecular dynamics for reasons outlined in [11], and so only linear momentum and
total energy are used as benchmarks for algorithm performance in this report.

2.2. Symplectic integrators and Hamiltonian mechanics
2.2.1. Introduction

To simulate the time evolution of a system using Molecular Dynamics, Newton’s equa-
tions of motion (2.1) are numerically integrated in time using an integrator, which is
a numerical scheme that approximates the solution to an ordinary differential equation
(ODE). Integrators can inhibit a range of properties, one of which is the topic of this
report, namely the integrator being symplectic. An integrator is symplectic if it conserves
a certain map in phase space, in a sense to be made precise in this section.

2.2.2. Phase space

The natural setting in which to study symplecticity is the phase space of the system of
interest, and in particular the phase space of each particle in the system. In [4], J.M.
Haile defines phase space as such: For a system of N particles, the phase space S is a
6 N-dimensional space which is composed of two parts: A 3/N-dimensional configuration
space in which each of the 3N coordinate axes are components of the ¢; of each particle

(defined as in section 2.1.1) and a 3N-dimensional momentum space in which each of the
3N coordinate axes are components of the p; of each particle (also defined as in section
2.1.1). A point in the phase space S therefore corresponds to a point in the configuration
space along with a point in the momentum space, which together represent a possible
state (combination of positions and momenta) of the system [4].

2.2.3. Symplectic transformations

Consider a system with N particles moving in d dimensions. To each particle we can
assign a 2d-dimensional space (a d-dimensional configuration space combined with a
d-dimensional momentum space) with entries in R. The theory needed to define sym-
plecticity and subsequent proofs of theorems concerning symplectic maps in the resulting
space R* are documented by by Hairer et al. in [8]. Hairer et al. initially consider two

vectors
gp} 2d {np} 2d
= € R*%, = e R
: Lq 7 Tq

where £,,n, and &,,7n, denote the position and momentum components of { and 7, re-
spectively. The oriented area Aoy p(€,n) of the parallelogram P spanned by £ and 7 is
introduced by Hairer et al. for the case d = 1 through the map

Aoy, p = det Ep Zpl = &My — Eqp- (2.7)

q q

For the general case (and consequently, the case of a higher-dimensional parallellogram),
Hairer et al. generalize this map by considering the sum of the oriented areas of the
projections of P onto each plane spanned by (q;,p;) which Hairer et al. define by the
bilinear map

d d
(e = Dot |20 0] =36~ Gyt (28)
i=1 Sai Tlas i=1
Using matrix notation Hairer et al. write (2.8) as
w(&n) =& JIn,
g [0] (2.9)
—I; 0

where I; denotes the d-dimensional identity matrix. Using (2.8) and (2.9) Hairer et al.
define a linear symplectic map as follows:
Definition 1. A linear map A : R?? — R?? {s symplectic if

ATJA =,

or equivalently if
w(AE, An) = w(&,n), V& n € R*.

Hairer et al. remark that the case d = 1 where w({,n) is the oriented area of the
parallelogram P spanned by ¢ and 7, symplectic maps can be identified as area preserving
with respect to P and similarly that a symplectic map generally preserves the sums of
the areas of the projected parallelograms considered in (2.8).

Hairer et al. define a symplectic non-linear map as follows and motivate the definition
by noting that non-linear differential maps can be locally approximated as linear.
Definition 2. A differentiable map g : U — R?? (where U C R* is open) is symplectic
if the Jacobian matrix is everywhere symplectic, that is, if

g (p,q)" I (p,q) = J

or equivalently if
w(g'(p. @&, 9 (p.@)n) = w(&,m), V& n € R*.

2.2.4. Properties of symplectic maps in Hamiltonian mechanics

A fact that will be used in the report is that compositions of symplectic maps are sym-
plectic [6].

In [8], Hairer et al. use the theory and definitions introduced in the previous section to
further develop the theory of symplectic maps and provide connections to Hamiltonian
mechanics. Hairer et al. introduce the time-t flow of a Hamiltonian system by the
following definition:

Definition 3. Consider a solution set (p(t),q(t)) of Hamilton’s equations (2.4) with
initial values p(0) = po, q(0) = qo. The time-t flow ¢, of a Hamiltonian system is defined
as the map that advances the solution by time: VAD AR U?2?

¢ U — R*

. (2.10)
(p(to), q(to)) — (p(to + 1), q(to +1)).

The theory in this section will ultimately show that the defining property of Hamiltonian
systems are that their flow maps are symplectic maps. To this end, Hairer et al. introduce
the concept of a differential equation being locally Hamiltonian through

Definition 4. Let U C R?? be open. A differential equation

y=f(y)

defined in U 1s locally Hamiltonian if for every yo € U there exists a neighbourhood where

fly)=J'VH(y)

for some function H.

To show why locally Hamiltonian is a proper name for this property, Hairer et al. define
y = (p,q), that is, y is a coordinate in phase space, and show that Hamilton’s equations
(2.4) can be written in the more suggestive way

y=J 'VH(y) (2.11)

10

where J was defined in (2.9) and VH(y) = H'(y)". The fact that flow maps are in
general symplectic maps is established by Hairer et al. in the following theorem.
Theorem 1 (Poincaré). Let H(p,q) be a twice continuously differentiable function on
an open set U C R?*@. Then, for each fixed ¢, the time-t flow ¢; of H(p, q) is a symplectic
map wherever it is defined.

In the theorem below, Hairer et al. establish that Hamiltonian systems are fully charac-
terized by their flow maps being symplectic:

Theorem 2. Let U C R?? be open. Let f : U — R?? be continuously differentiable.
Then the differential equation

v = f(y)

is locally Hamiltonian if and only if its time-t flow ¢,(y) is symplectic for all y € U and
for all sufficiently small ¢.

The following theorem will give another important property of flow maps:

Theorem 3 (Liouville). Let y be defined as in (2.11). The time-t flow ¢; of a Hamiltonian
system is volume-preserving in phase space; that is, for every bounded, open set 2 € R??
and every t for which ¢;(y) is defined and for all y €) we have

/dy:/ dy.
Q +(Q)

(In fact, this is true of every symplectic map).

For a proof of this theorem, see [9)].
2.2.5. Integrators and symplectic maps

For a solution set (p,q) to Hamilton’s equations in a phase space S with initial values
(po, o) and a corresponding time-t flow map ¢, it is possible to view a numerical one-step

method as a map
Q/Jt : S — S

U1 ((Po, 40)) = (P, @n) = (p(nt), q(nt))

that approximates the flow map ¢; of the system. Here, ;' denotes n-fold function
composition of 1, with itself. The virtue of this approach is that it is then possible
to discuss integrators of a system in terms of properties of flow maps. This fact leads
naturally to the following definition, taken essentially verbatim from [8]:

Definition 5. A numerical one-step method is called symplectic if the map

N = ¢t(yo)

1s symplectic whenever the method is applied to an infinitely differentiable Hamiltonian
system.

Viewed this way, a symplectic integrator has the properties outlined in section 2.2.4.. In
addition, it is possible to show that a symplectic integrator nearly conserves the numerical
Hamiltonian of a system over long time intervals under suitable conditions [7].

11

2.2.6. Extended phase space

A central notion in the Tao paper (see section 2.3) is extended phase space, proposed by
Pihajoki in [12]| building on ideas introduced by Hellstrom and Mikkola in [10]. Letting
the phase space of the system of interest be denoted S, Pihajoki introduces the extended
phase space of S as S2 = S x S. Using the coordinates (q,q,p,p) ((¢,z,p,y) in Tao’s
notation, see section 2.3.), Pihajoki notes that the symplectic form (see (2.9)) in S? takes
the form

0 _I2n:|

L. 0 (2.12)

J52 - J ® IQ == |:
where ® denotes the Kronecker product. Symplecticity in the extended phase space S?
is then defined analogously to in S (see Definition 1 and Definition 2) with Jg2 in place
of J. Many further notions and ideas introduced by Pihajoki in [12]| are used by Tao in
[16] and so will be covered in section 2.3.

2.2.7. Explicit and implicit integrators

A short discussion by T. Sauer on the difference between explicit and implicit integrators
is found in [15|. Sauer introduces explicit integrators as an integrator for which it is
possible to write

Vi1 = Yi + (i, t) (2.13)

for some function f, when integrating some function y in time. Explicit integrators are
called so to distinguish them from implicit integrators, which according to Sauer are of
the form

Yirr = Yi + f(tiv1, Yir1)- (2.14)

Instead of a function evaluation, a step forward in time for an implicit integrator consists
of numerically solving the system (2.14), which Sauer notes can be done by Newton’s
method or similar methods. Since solving (2.14) is numerically demanding compared
to evaluating (2.13), explicit integrators are desired in Molecular Dynamics where the
systems of interest are often large and computationally demanding.

2.2.8. Note on symplectic integrators for separable Hamiltonians

A means of constructing arbitrary-order explicit symplectic integrators for separable
Hamiltonians is provided by Yoshida in [17]. The case of separable Hamiltonians is
therefore not of primary interest in this report.

2.3. The Tao paper

In [16], M. Tao presents a family of explicit integration methods for general non-separable
Hamiltonians that are symplectic in extended phase space. Tao introduces (using ideas
from [12]|) the idea that for a given Hamiltonian H(q,p), it is possible to introduce
an extended phase space with the auxiliary variables (z,y) and consider an augmented

12

Hamiltonian
_ 1 , 1)
H(g,p,2y) = H(q,y) + H(z,p) +w { 5llg —zlz + 5llp — vl) (2.15)

where ||+, -||3 denotes the square of the usual norm in R". H(q,y) and H(z,p) are copies
of the original system, except that the auxiliary variables x,y are used instead of the
usual ¢, p respectively, 3|l¢ —z[|3+ |[p — y||3 is a constraint imposed on the system which
further couples the extended and non-extended systems but with no physical significance,
and w is a parameter that can be varied to increase or decrease the binding of the two
copies of the initial system. For more compact notation, Tao defines

1 1
Using this notation, Tao writes the augmented Hamiltonian as

H(q,p,z,y) = Hy + Hg +wHec. (2.17)

Tao notes that a feature of this construction is that Hamilton’s equations in the original
system and the extended Hamilton’s equations using the augmented Hamiltonian, that
is, the two initial value problems

Q = 0pH(Q, P); Q(0) = Qo

P=—0gH(Q,P); P(0)=Py (218)
and _
q¢=0,H(q,p,7,y) —5H(x,p +wlp—vy); q0)=Q
= —9,H(q,p,2,y) = —0,H(q,y) —w(qg—x); p(0) =P
. pw0=Q 2

)+ w(
) —w(
i =0,H(q,p,z,y) —3H(,y)+w(y—p'
Y= _axﬁ(%p’x?y)_ _aIH($7p> (‘73 - Q>; y(O) = I,
Q) P

have the same solution in the sense that if Q(t), P(t) solve the original system (2.18),
putting

q(t) = x(t) = Q(1),

p(t) = y(t) = P(t)
solves the augmented system (2.19) as well, and since Q(t), P(t) are ODE:s, the existence
and uniqueness theorem states that this solution is unique. Tao constructs the proposed
integrator ¢, where [denotes the order of the numerical method, through a certain
function composition of the respective exact time-d flows of Hy, Hp and He. In this
report, the second- and fourth-order version of ¢, that is, ¢3, ¢$ are considered. Denote
the exact time-& flows of Hu, Hp,wHc as ¢ n gb‘sHB, 0 . respectively. These flow maps

wHe
are symplectic in extended phase space. The exact expressions of each flow map are given

13

by Tao as

q q
s . |p| %y |p—00,H(q,y)
Ha ™ g — x+80,H(q,y) |’
| Y] i Y]
[¢] 5 [q + 00,H (x,p)]
6%
&y i B Z; , (2.20)
| |y — 00, H(z,p)]
] q+x+ (¢ —) cos(2wd) + (p — y) sin(2wd)
5 |p| %ae 1Pty (p—y)cos(2wd) — (¢ — o) sin(2wd)
wHe ™ g 2 |q+x—(q—x)cos(2wd) — (p — y) sin(2ws)
¥ p+y— (p—y)cos(2wd) + (¢ — x) sin(2wd)

The second order integrator is then defined by Tao as
05 = Bifs © it © Dorre © Bty © Bifns (2:21)
and the [-th order integrator as
of = ¢l 0 9y 0 9l (2.22)

(referred to by Tao as "the triple jump”), where

1
= 9 _ 91/(+1)"

Using the fact that compositions of symplectic maps are symplectic (as stated in sub-
section 2.2.4), Tao notes that gb? is symplectic in extended phase space. This integrator
produces a discrete trajectory

where P(t), Q(t) are the exact solution of Hamilton’s equations for the given Hamiltonian
and initial conditions P(0), Q(0) and where gy, zn ~ Q(NJ) and py,yy ~ P(NJ). Tao
provides some results on selecting w if the system in question is integrable, but gives
no fully systematic way of deciding appropriate w for integrating a given Hamiltonian.
Hence this problem is handled heuristically in this report.

14

Chapter 3

Investigation

3.1. Problem

The objective of this report was to gauge the performance of the proposed integrators out-
lined in section 2.3 when integrating two Molecular dynamical systems with non-separable
Hamiltonians, and to compare their performance to those of the Velocity Verlet scheme
[13] as well as the fourth-order Runge-Kutta scheme [14]. The comparison was made
through examination of conservation of total energy and total linear momentum when
using each of the integrators described above. A discussion of why these parameters are
appropriate benchmarks for each of the integrators can be found in subsection 2.1.5.

3.2. Model and physics

3.2.1. Kinetic temperature

Using the results
1
PV = §Nm(v2),
PV = NkgT

(3.1)

from [3| (where P denotes pressure to distinguish from the momentum p) which are valid
for an ideal gas, the kinetic temperature of a system of particles can be expressed as

o 1 N p2
~ 3Nkp £~ 2m;,

)

(3.2)

This measure of temperature, renormalized to kg = 1, was used in the temperature-
dependent potentials. This is not entirely physically valid, since the particles in the con-
sidered system interacted via interparticular potentials and this measure of temperature
is valid for ideal gases where there is no interparticular interaction. This measure of tem-
perature mainly served as an effective means to make the potentials depend non-linearly
on the momentum of the system in addition to positions, which made the Hamiltonians of
each system non-separable and thus appropriate to stress-test the algorithms with.

15

3.2.2. Temperature-dependent spring potential

The first system considered in this report was a one-dimensional system of two particles
with equal masses m; = mo = m interacting via the spring-like potential
k(T
Vg, T) = %(fh — 42 — 370)2,
k(T) = ko exp(—5T)

(3.3)

where g2 denotes the interparticular distance, xo denotes the distance such that V' (zq, T') =
0, 8 is a parameter without physical significance, and the temperature 7' is defined as in
(3.2). The (non-separable) Hamiltonian of the system was therefore

2 2 k(T
H.0) = 3+ 2+ S - g (3.4)

By Hamilton’s equations (2.4), the equation of motion for particle one in this system is

qv:%Jﬂ%m={%U—é%@@r—%—xﬂ (3.5)

P1 = =04, H(q,p) = k(p)(q1 — q2 — 20);
3.2.3. Temperature-dependent Lennard-Jones

The second system considered in this report was a three-dimensional system consisting
of N particles in a box with side length L and imposed periodic boundary conditions
interacting through the interparticular Lennard-Jones potential

o) |(n) - (e Zan) |

where ¢;; denotes the distance between particles ¢ and j, € denotes the depth of the
potential well, and o denotes the interparticular distance such that Vj;(c) = 0 By
summing over all contributions to the total potential energy of the system, The Lennard-
Jones potential (3.6) gives rise to the Hamiltonian

sz > 45[(”%—%“)12‘(m>1‘ 3D

1<i<j<N

To make (3.7) non-separable, a temperature dependence was introduced in e through

e — e(T) = egexp(—5T), (3.8)
where 3 denotes a parameter with no physical significance. This substitution yielded the
Hamiltonian

p? o 12 - 6
H(p,q) = Lot %@)(———J —C———>. (3.9)

16

3 could then be varied to control the degree of "non-separability” of (3.9), since for small
B, e(T) ~ €9. By Hamilton’s equations (2.4), the Hamiltonian (3.9) gives rise to the
equations of motion

G = 0, H(g,p) = 7 [1 = AV (p,)
N
9512 6 (3.10)
pi = —04,H(q, p) = 4e(p (-)%’_Q"
Wlllan) =4e0) 3, \ =g~ o) @~ %)

3.3. Simulation
3.3.1. Temperature-dependent spring constant

initially the particles were places at distance 1, both with the speed |[v|| = 0.25 directed
away from each other. Simulations were preformed using the fourth-order Runge-Kutta
scheme, Velocity Verlet scheme and the proposed integrator of orders 2 and 4, respectively.
The simulations were performed using the parameters displayed in Table 3.1. The results
of interest in this report were conservation of energy and conservation of momentum. In
this report the error in total energy was calculated as

E(t) — E,

AFE =
Eq

(3.11)

where E denotes the total energy at time t and Ejy denotes Ey = E(0). The error in
momentum Ap was calculated as

Ap = p(t) = po, (3.12)
where p(t) denotes the momentum at time t and py = p(0).

3.3.2. Temperature-dependent Lennard-Jones potential

To save computing resources, the truncated Lennard-Jones potential

4e <L>m— (LY g —q;ll <7
V(gi;) = @ — qjll lg —aill) | o (3.13)

0, lg: = g5l > e

Table 3.1: Parameters used in the temperature-dependent Lennard-Jones simulation.

17

which can be found in [5], where 7. is a cutoff distance often set to 2.50 (so also in this
report), was used in the simulation with the modification

e — & (T) = g exp (—4T)

12 6
(-2o) - (=2) | Ja-al<e
5 X
||Qi_Qj|| ||C]i—Qj|| ' ! ‘

0, lgi = q;ll > re
(3.14)

(see subsection 3.2.3) to yield

4egexp (—5T)

The N particles were placed in a three-dimensional box with side length L with imposed
periodic boundary conditions. The initial positions and velocities of the particles were
randomly generated (using a seeded random number generator to be able to reproduce
results) and then distributed as to not place any particles too close to another and to fix
the center of mass of the system by setting the total momentum of the system to 0. This
was done using Algorithm 1 and Algorithm 2. The system was integrated a predetermined
number of steps in time using the Velocity Verlet scheme [13], the fourth-order Runge-
Kutta scheme [14], and the proposed integrator of order 2, respectively.

The proposed integrator of order 4 was not used since it is infeasibly slow for systems
larger than a few particles; one step of the fourth-order Tao scheme is a composition of
three steps of the second-order Tao scheme (see section 2.3), which in turn is a compo-
sition of five flow maps, each of which require one force evaluation, so one step of the
fourth-order Tao scheme for one particle requires 15 force evaluations (compared to one
force evaluation per step for the Velocity Verlet scheme and five force evaluations per
step for the second-order Tao scheme). Since force evaluations are by far the most com-
putationally expensive part of each integration step for large systems, the fourth-order
Tao scheme could not be used for systems larger than a few particles.

The result of the simulations were plotted and compared on the basis of conservation of
total energy and total linear momentum. To plot the energy error, the expression

E(t) — E,

AB(t) = ——

(3.15)

where E(t) denotes the total energy of the system at time ¢ and Ey denotes the initial
total energy of the system, was used as a measure of the energy error. To plot the error
in momentum, the expressions

Api(t) = pi(t) — pio; (3.16)

where p;(t) denotes the i:th component of the total momentum at time ¢ and p;, denotes
the i:th component of the initial momentum, was used as a measure of the momentum
error. The difference p;(t) — p;, was not divided by p;, analogously to in (3.15) since p;,
is initially set to 0, as stated above.

The parameters used in the simulation are compiled in Table 3.2.

18

H 16 \ N \ dt \ w \ Box side length \ €0 \ o \ No. time steps H
1 0.01]10]0.005 | 20 | 6o [1[1] 10000 |

Table 3.2: Parameters used in the temperature-dependent Lennard-Jones simulation.

Algorithm 1: Initialize velocities

for : . =1 to N do
| i:th velocity := Random components in range -1 to 1 in all directions

end
Total velocity := 0 ;
for i :=1 to N do
| Total velocity + = i:th velocity

end

for : . =1 to N do

| 4:th velocity — = (Total velocity)/N
end

Algorithm 2: Initialize positions

All Positions := Empty list ;

while # elements in All Positions < N do

New position := random components in range 0 to L in all directions;
forall Position € All Positions do

if distance between Position and New Position < o then
| Re-randomize New Position

end

else
| Add New Position to All Positions

end
end

end

19

3.4. Results

3.4.1. Temperature-dependent spring

Figure 3.1 shows the time evolution of the potential, kinetic and total energy in one
simulation in the system described in subsection 3.2.2 when integrating with fourth order
Runge-Kutta, Velocity Verlet and the proposed Tao schemes of orders two and four,
respectively. Figure 3.2 compares the error in total energy and in total momentum.

3.4.2. Temperature-dependent Lennard-Jones potential

Figure 3.3 shows the time evolution of the total, potential and kinetic energies of the
system described in subsection 3.3.2 when integrated using the Velocity Verlet scheme,
fourth-order Runge Kutta scheme, and the second order Tao scheme, respectively. Fig-
ure 3.4 shows the errors in total energy and all three total linear momentum components
of the system.

3.4.3. General takeaways

There was considerable difficulty involved in finding appropriate parameters for dt and w
when using the Tao scheme. Other time steps and values for w than those presented in
Table 3.2 would often result in numerical problems with particles moving too closely to
each other during the Lennard-Jones simulation, with unphysically large interparticular
forces as a result. Longer simulation times meant a larger probability of this problem
surfacing, and so the longest recorded simulation time in which this problem did not
occur was the time presented in Table 3.2. The Lennard-Jones simulation using the Tao
scheme of order 2 took a considerably longer time to run than either of the Velocity-Verlet
or fourth-order Runge-Kutta scheme-based simulations.

20

--=-Total energy
+—— Potential energy,
-------- Kinetic energy

--=-Total energy
+~—— Potential energy,
-------- Kinetic energy

-~=-Total energy
+—— Potential energy
........ Kinetic energy

-~=-Total energy
+—— Potential energy
........ Kinetic energy

Figure 3.1: Time evolution of the total, potential and kinetic energies of the system described
in subsection 3.3.2 when integrated using the Velocity Verlet scheme, fourth-order Runge
Kutta scheme, and the second order Tao scheme, respectively. Parameters as in Table 3.1.

21

10-1 Energy error

2.5

1.5

==~- Tho 2

’ Th0 4

0.5 i
L Vel et i

Energy error [(E — Ey)/FEo]

1 "l‘y [H]
0] ' '-lnlduullh""I
I I I I I I I I I I |

0 10 20 30 40 50 60 70 80 90 100

Time
1013 FError in momentum
1.5
1 |
0.5 |

|
o
o
|

----Tao 2

Momentum error [P — P

|
—_
!

|
p—t
o

I I I I I I I I I
0O 10 20 30 40 50 60 70 &80 90 100
Time

Figure 3.2: Error in total energy and in total momentum of the system simulated in
subsection 3.3.1. Parameters as in Table 3.1.

22

Energies, Verlet Energies, RK4

8 B a
6| S FETR L A&
bl M
4 - _'__ B o T o D P VL PR AP e L X Lot
> >
&0 &0
g g
= 2 g 9
= =
0 0
9| -7v- Total energy 9| ~=--/Total energy
—— Potential energy —— Potential energy y
/0 I A S B Kinetic energy B/ R S A B Kinetic energy
0 5 10 15 20 25 0 5 10 15 20 25
Time Time
Energies, Tao 2
8 |
Y 2§ H
6 FEH e 'E"E" Ny $
i: H e TS W | fw’ﬂ.fi.:‘?
g IR it
5 4 peee RO PP TR R Sl e il b T Pl
2
: 2
=
0 -
_o9 | ===~ Total/energy f
—— Potential energy
7 I R B e Kinetic energy
T T T T
0 5 10 15 20 25

Time

Figure 3.3: Time evolution of the total, potential and kinetic energies of the system described
in subsection 3.3.2 when integrated using the Velocity Verlet scheme, fourth-order Runge
Kutta scheme, and the second order Tao scheme, respectively. Parameters as in Table 3.2.

23

Energy error

102 10-13 Error in x-momentum
1
= —
g R
) [
n &
H
g =
— (]
IS
: E
= : b
% g f0s
q‘gj g _06 --=%Tao 2
S 06
H = —RK4
084 Verlet
_1 T T T T 1
0 5 10 15 20 25
Time
10-13 Error in y-momentum 10-13 Error in z-momentum
1.5 1
1 |

=]
ot
|

Momentum error [P — Pp]
Momentum error [P — Pp]

—0.5 SRS
S50 % —06 | ----Tao 2
-1 — RK4 ' —— RK4
........ Verlet —0.8 weeeee Verlet
-1.5 T T T T -1 T T T T 1
0 5 10 15 20 25 0 5 10 15 20 25
Time Time

Figure 3.4: The errors in total energy and all three total linear momentum components of
the system described in subsection 3.3.2. Parameters as in Table 3.2.

24

3.5. Discussion

3.5.1. Temperature-dependent spring potential

Conservaton of momentum

As seen in Figure 3.2, the Tao integrator did not conserve momentum as well as the
Velocity Verlet and fourth-order Runge-Kutta schemes. The momentum error of the
second-order Tao scheme oscillated around the true value of 0, while the momentum error
of the fourth-order Tao scheme seemed to grow linearly with time. The momentum errors
of both the Velocity Verlet and Runge-Kutta schemes were both constantly 0, which is
likely to be an effect of the investigated system being small and symmetric.

Energy conservation

As noted in Figure 3.2, the Tao schemes of orders 2 and 4 preserved total energy during
the whole simulation with the error oscillating arount the true energy while the energy
error seemed to grow linearly in time when using both the Velocity Verlet and Runge-
Kutta schemes. The errors of both the Velocity Verlet and Runge-Kutta schemes were
also oscillatory in nature.

3.5.2. Temperature-dependent Lennard-Jones potential
Conservaton of momentum

As seen in Figure 3.4, the Tao integrator did not conserve momentum to the same degree
as the Velocity Verlet and fourth-order Runge-Kutta schemes. The momentum error
of the Tao scheme of order 2 seemed to oscillate around the true value of 0, with total
momentum being approximately conserved in the mean. The magnitude of the oscillatory
amplitude was small but seemed to grow with time. The reason for this behaviour is not
immediately apparent, but the problem could possibly stem from the reciprocal actions
of the extended and original systems.

Energy conservation

Again from Figure 3.4, the Tao scheme preserved total energy better than both the
fourth-order Runge-Kutta and Velocity Verlet schemes. The difference was small but
noticeable.

3.5.3. Selecting the parameter w

The fact that there is no systematic way of establishing a proper value for the parameter
w when integrating a given system in time using the Tao scheme is a major drawback of
using the Tao scheme. Many different values for w had to be tried, with wildly varying
quality of results, to establish the results in Figure 3.3 and Figure 3.1, which was time
consuming since every simulation took a significant amount of time to run.

25

3.5.4. Choice of other parameters

The choices of the parameters outlined in Table 3.1 and Table 3.2 were largely based
on heuristics and trial and error. It is entirely possible for other parameter choices to
give differing results from those obtained in section 3.4. Variation of ingoing parameters
in the simulations of subsection 3.3.2 and subsection 3.3.1 is a possible topic for further
study.

3.5.5. Sensitivity to step size

In general, the Tao scheme demanded a smaller step size than the Velocity Verlet and
RK4 schemes (regardless of the choice of the parameter w) to not run into numerical
problems arising from two particles being too close to each other (with unreasonably
large interparticular forces as a result) during the Lennard-Jones simulation. This issue
could possibly be resolved by using a variable step size during the simulation, but this
was not attempted in this report.

3.5.6. Cumbersome implementation

The numerical implementation of the Tao scheme was very cumbersome compared to the
implementation of the Velocity Verlet or RK4 schemes, which increases the risk of human
errors when designing a Molecular dynamical simulation based on the Tao scheme. This
issue is of course only relevant when building a simulation from scratch, and would be
resolved by inclusion of the Tao scheme in Molecular dynamical software packages.

3.5.7. Numerical speed

The Tao schemes were considerably slower than the Velocity Verlet and fourth-order
Runge-Kutta schemes for reasons outlined in subsection 3.3.2. This issue was more
apparent when simulating the larger system of particles of subsection 3.3.2.

26

Chapter 4

Summary and Conclusions

4.1. Temperature-dependent spring potential

The errors in momentum of the Tao schemes of orders 2 and 4 seemed to oscillate around
the true value of 0 during the simulation, with the amplitude of oscillation bounded in the
case of the second-order Tao scheme and linearly increasing with time in the case of the
fourth-order Tao scheme. The Tao schemes of orders 2 and 4 seemed to conserve total
energy in the mean, while the Velocity Verlet and fourth-order Runge-Kutta schemes
seemed to not conserve total energy over the course of the simulation. The Tao schemes
of orders 2 and 4 were cumbersome to implement, but could be worthwile if conservation
of total energy in the system is highly desirable.

4.2. Temperature-dependent Lennard-Jones potential

The error in momentum of the Tao scheme of order 2 oscillated to a higher degree than
both the Velocity Verlet and fourth-order Runge-Kutta schemes, but total momentum
seemed to be conserved in the mean. The Tao scheme of order 2 performed slightly better
in conserving energy than the Velocity Verlet and fourth-order Runge-Kutta schemes.
Again, the Tao scheme was cumbersome to implement and required a great deal of
heuristics when selecting a value for the parameter w in addition to small step sizes
to not run into numerical issues during the simulation. Furthermore, it was very slow
when integrating large systems since it requires multiple force evaluations per particle
and integration step (see subsection 3.3.2). In summary, the second-order Tao scheme
is not an appropriate choice of integrator when integrating systems containing forces
whose magnitude, like that of the forces arising from an interparticular Lennard-Jones
potential, grows exceedingly large if interparticular distance is small. However, the strong
performance of the Tao schemes of order 2 and 4 in the temperature-dependent spring
potential simulation gives reason to believe that there are Molecular dynamical systems
in which the Tao schemes are sound choices of integrator.

27

Bibliography

[1]

2]

3]

4]
5]
[6]

17l

18]

19]

G J Ackland. “Temperature Dependence in Interatomic Potentials and an Improved
Potential for Ti”. In: Journal of Physics: Conference Series 402 (Dec. 20, 2012),
p. 012001. 1SSN: 1742-6588, 1742-6596. DOI: 10.1088/1742-6596/402/1/012001.
URL: http://stacks.iop.org/1742-6596/402/i=1/a=0120017key=crossref .
576c8d9f03f16c2el11fael11b43e9f008 (Visited on 03/26/2019).

Mattias Blennow. “Lagrangian Mechanics”. In: Mathematical Methods for Physics
and Engineering. Boca Raton: CRC Press, Nov. 21, 2017, pp. 615-631. ISBN: 978-
1-138-05690-9.

Stephen Blundell and Katherine M. Blundell. “The Ideal Gas Law”. In: Concepts
in Thermal Physics. 2nd ed. OCLC: 0cn430497029. Oxford ; New York: Oxford
University Press, 2010. 1SBN: 978-0-19-956209-1 978-0-19-956210-7.

J.M. Haile. “Fundamentals”. In: Molecular Dynamics Simulation : Elementary Meth-
ods. New York: Wiley, 1992, pp. 38—103. 1SBN: 0-471-81966-2.

J.M. Haile. “Soft Spheres”. In: Molecular Dynamics Simulation : Elementary Meth-
ods. New York: Wiley, 1992, pp. 188-191. 1SBN: 0-471-81966-2.

E. Hairer, Christian Lubich, and Gerhard Wanner. “I.5 Splitting Methods”. In:
Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary
Differential Equations. 2nd ed. Springer Series in Computational Mathematics 31.
OCLC: 0cm69223213. Berlin ; New York: Springer, 2006, p. 48. ISBN: 978-3-540-
30663-4.

E. Hairer, Christian Lubich, and Gerhard Wanner. “IX.8 Long-Time Energy Con-
servation”. In: Geometric Numerical Integration: Structure-Preserving Algorithms
for Ordinary Differential Equations. 2nd ed. Springer Series in Computational
Mathematics 31. OCLC: 0cm69223213. Berlin ; New York: Springer, 2006, p. 367.
ISBN: 978-3-540-30663-4.

E. Hairer, Christian Lubich, and Gerhard Wanner. “VI1.2 Symplectic Transforma-
tions”. In: Geometric Numerical Integration: Structure-Preserving Algorithms for
Ordinary Differential Equations. 2nd ed. Springer Series in Computational Mathe-
matics 31. OCLC: ocm69223213. Berlin ; New York: Springer, 2006, pp. 182—-187.
ISBN: 978-3-540-30663-4.

E. Hairer, Christian Lubich, and Gerhard Wanner. “VI1.9 Volume Preservation”. In:
Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary
Differential Equations. 2nd ed. Springer Series in Computational Mathematics 31.
OCLC: 0cm69223213. Berlin ; New York: Springer, 2006, pp. 227-233. ISBN: 978-
3-540-30663-4.

28

https://doi.org/10.1088/1742-6596/402/1/012001
http://stacks.iop.org/1742-6596/402/i=1/a=012001?key=crossref.576c8d9f03f16c2e11fae11b43e9f008
http://stacks.iop.org/1742-6596/402/i=1/a=012001?key=crossref.576c8d9f03f16c2e11fae11b43e9f008

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Christian Hellstrom and Seppo Mikkola. “Explicit Algorithmic Regularization in
the Few-Body Problem for Velocity-Dependent Perturbations”. In: Celestial Me-
chanics and Dynamical Astronomy 106.2 (Feb. 2010), pp. 143-156. 1SSN: 0923-2958,
1572-9478. DOI: 10.1007/s10669-009-9248-8. URL: http://link.springer.
com/10.1007/s10569-009-9248-8 (visited on 04/13/2019).

V.A. Kuzkin. “On Angular Momentum Balance for Particle Systems with Periodic
Boundary Conditions”. In: ZAMM - Journal of Applied Mathematics and Mechan-
ics / Zeitschrift fir Angewandte Mathematik und Mechanik 95.11 (Nov. 2015),
pp- 1290-1295. 18SN: 00442267. DOI: 10 . 1002 / zamm . 201400045. URL: http:
//doi.wiley.com/10.1002/zamm.201400045 (visited on 04/24/2019).

Pauli Pihajoki. “Explicit Methods in Extended Phase Space for Inseparable Hamil-
tonian Problems”. In: Celestial Mechanics and Dynamical Astronomy 121.3 (Mar.
2015), pp. 211-231. 1SSN: 0923-2958, 1572-9478. DOT: 10.1007/510569-014-9597 -
9. URL: http://link.springer.com/10.1007/s10569-014-9597-9 (visited on
04/04/2019).

William C. Swope et al. “A Computer Simulation Method for the Calculation of
Equilibrium Constants for the Formation of Physical Clusters of Molecules: Appli-
cation to Small Water Clusters”. In: The Journal of Chemical Physics 76.1 (Jan.
1982), pp. 637-649. 1sSN: 0021-9606, 1089-7690. DOI: 10.1063/1.442716. URL:
http://aip.scitation.org/doi/10.1063/1.442716 (visited on 04/28/2019).
Tim Sauer. “6.4 Runge-Kutta Methods and Applications”. In: Numerical Analysis.
2nd ed. OCLC: 0cn725295545. Boston: Pearson, 2012, p. 316. 1SBN: 978-0-321-
78367-7.

Tim Sauer. “6.6. Implicit Methods and Stiff Equations”. In: Numerical Analysis.
2nd ed. OCLC: 0cn725295545. Boston: Pearson, 2012. 1SBN: 978-0-321-78367-7.
Molei Tao. “Explicit Symplectic Approximation of Nonseparable Hamiltonians: Al-
gorithm and Long Time Performance”. In: Physical Review E 94.4 (Oct. 10, 2016).
ISSN: 2470-0045, 2470-0053. DOI: 10.1103/PhysRevE. 94 . 043303. URL: https:
//link.aps.org/doi/10.1103/PhysRevE.94.043303 (visited on 02/22/2019).
Haruo Yoshida. “Construction of Higher Order Symplectic Integrators”. In: Physics
Letters A 150.5-7 (Nov. 1990), pp. 262-268. 1SSN: 03759601. DOI: 10.1016/0375-
9601(90)90092-3. URL: http://linkinghub.elsevier.com/retrieve/pii/
0375960190900923 (visited on 02,/27/2019).

29

https://doi.org/10.1007/s10569-009-9248-8
http://link.springer.com/10.1007/s10569-009-9248-8
http://link.springer.com/10.1007/s10569-009-9248-8
https://doi.org/10.1002/zamm.201400045
http://doi.wiley.com/10.1002/zamm.201400045
http://doi.wiley.com/10.1002/zamm.201400045
https://doi.org/10.1007/s10569-014-9597-9
https://doi.org/10.1007/s10569-014-9597-9
http://link.springer.com/10.1007/s10569-014-9597-9
https://doi.org/10.1063/1.442716
http://aip.scitation.org/doi/10.1063/1.442716
https://doi.org/10.1103/PhysRevE.94.043303
https://link.aps.org/doi/10.1103/PhysRevE.94.043303
https://link.aps.org/doi/10.1103/PhysRevE.94.043303
https://doi.org/10.1016/0375-9601(90)90092-3
https://doi.org/10.1016/0375-9601(90)90092-3
http://linkinghub.elsevier.com/retrieve/pii/0375960190900923
http://linkinghub.elsevier.com/retrieve/pii/0375960190900923

Chapter 5

Appendix 1: Python code used in the simula-
tions

5.1. Temperature-dependent spring simulation

import matplotlib.pyplot as plt

import numpy as np

import copy

from matplotlib2tikz import save as tikz save
from collections import OrderedDict

from cycler import cycler

linestyles = OrderedDict (

[(7solid 7, (0, 0O)),

("loosely_dotted (0, (1, 10))),

("dotted (0, (1, 5))),

("densely_dotted (0, (1, 1))),

("loosely_dashed ’, (0, (5, 10))),

("dashed (0, (5, 5))),

("densely_dashed (0, (5, 1))),

(’loosely_dashdotted’, (0, (3, 10, 1, 10))),

(’dashdotted ’, (0, (3, 5, 1, 5))),

(’densely_dashdotted’, (0, (3, 1, 1, 1))),

("loosely_dashdotdotted’, (0, (3, 10, 1, 10, 1, 10))),

(’dashdotdotted (0, (3, 5, 1, 5, 1, 5))),

("densely_dashdotdotted’, (0, (3, 1, 1, 1, 1, 1)))])
plt.rc(’axes’, prop_ cycle=(cycler(’color’, | ’b’, ’'r’, 'g’, ’k’

[+

30

Y

cycler (’linestyle’, [linestyles |’
densely_dotted’|, =7, =7, =’

D)
) + cycler(’lw’, [3, 3, 1.5, 3]))

class Body:
"M Particle with mass, position and velocity """
def init (self | name, mass, pos, vel):
self .name = name #Name
self .mass = mass #Mass
self .pos = pos #Position
self . vel = vel #Velosity

#FExtended system:
self.pos2 = pos
self.vel2 = vel

class Spring:
"MrSpring with equilibrium and spring constant”"""
def init (self, equilibrium , springConst, separable
modelConst) :

self .LO = equilibrium
self. b = modelConst
self. kO = springConst
self. sep = separable

def k(self, syst, extended = False):
"""Returns the spring constant”""
if self. sep:
return self. kO #Spring konstant for a separable
system
if not extended:
pl = syst[0].vel % syst[0].mass
p2 = syst[1].vel % syst[1].mass
elif extended:
pl = syst[0].vel2 % syst|[0].mass
p2 = syst[1].vel2 % syst|1].mass
return self. kO x np.exp(— self. b x (pl*x2 + p2x*xx2)

)

def kineticEnergy (syst):

""" Calculates and returns the kinetic energy of the system
ninn

kinen = 0
for particle in syst:
kinen += particle.velxx2 % particle.mass / 2

31

return kinen

def potentialEnergy(syst, spring):
"""Returns the potential of the system """
LO = spring.LO #Equilibrium for the
spring potential
x = syst[0].pos — syst[1l].pos — LO #
return spring.k(syst) x x*x2 / 2

def vel nonsep(body, syst, spring, extended = False):
""" Calculates and returns dH/dq for the system """
LO = spring.LO #equilibrium of the spring
m = body.mass #mass

if not extended:
#0m vi uppdaterar q vill vi ha += dH(z,p)/dp
vl = syst [0]. vel
v2 = syst[1]. vel
ql = syst|0].pos2
q2 = syst|1].pos2
k = spring.k(syst)

elif extended:
#0m vi uppdaterar z wvill wvi ha += dH(q,y)/dp
vl = syst [0]. vel2
v2 = syst[1].vel2
ql = syst|0]. pos
q2 = syst|1].pos
k = spring.k(syst, extended = True)

if body.name — ’partl ’:
return vl * (1 — spring. b % k % (ql — q2 — LO) *x 2 /
2) #SPRING

if body.name — ’part2’:
return v2 % (1 — spring. b x k % (ql — q2 — LO) *x 2 /
2) #SPRING

def forceOn (body, syst, spring, extendedMomentum =
extendedPosition = False):
"""Returns the force on a particle”""
LO = spring.LO
if not extendedMomentum:

k = spring.k(syst)
elif extendedMomentum:

False ,

32

k = spring.k(syst, extended = True)
if not extendedPosition:
#0m vi uppdaterar p wvill vi ha += dH(q,y)/dq

if body.name =— ’partl’:
x = — (body.pos — syst[1l].pos — L0)
elif body.name — ’part2’:

x = syst [0].pos — body.pos — LO
return k *x x
elif extendedPosition:
#Om vi uppdaterar y vill vi ha += dH(z,p)/dz

if body.name — ’partl ’:
x = — (body.pos2 — syst[1].pos2 — L0)
if body.name — ’part2’:

x = syst [0].pos2 — body.pos2 — LO
return k x x

def RK4(syst, spring, dt):

nmnnnnn

initPositions = [body.pos for body in syst |

a_1ls = [forceOn(body, syst, spring) / body.mass * dt for
body in syst |
b 1s = | body.vel % dt for body in syst|

for i in range(len(syst)):
syst|i].pos = initPositions|[i] + b_1Is[i]| % 1/2

a 2s = | |
a_3s []
a_ 4s = | |

b 2s = [|
b_3s []
b 4s = | |

counter = 0
for body in syst:
a_2s.append(forceOn (body, syst, spring) / body.mass x dt

)

b_2s.append ((body.vel + a_ls|[counter| / 2) x dt)
counter += 1

for j in range(len(syst)):
syst|j].pos = initPositions|[j] + b_2s[j| * 1/2

33

def

def

counter = 0

for body in syst:
a_3s.append (forceOn (body, syst, spring)/ body.mass * dt)
b_3s.append ((body.vel + a_2s|counter| / 2) x dt)
counter += 1

for j in range(len(syst)):
syst[j].pos = initPositions[j] + b _3s[j]

counter = 0
for body in syst:
a_4s.append(forceOn (body, syst, spring) / body.mass x dt
)
b_4s.append ((body.vel + a_3s|[counter|) = dt)
counter +—= 1

for j in range(len(syst)):
syst[j].vel = syst[j].vel + (a_1s[j] + 2xa_2s[j] + 2x
a_3s[j] + a_4s[j]) / 6
syst[j].pos = initPositions|[j] + (b_1s[j]| + 2«b_2s[j| +
2«b_3s|j| + b_4s[j]) / 6

verlet (syst, spring, dt):
""MOne step for the system wusing velocity wverlet """
systCopy = copy.deepcopy (syst)
for body in syst:
body.vel += (forceOn(body, systCopy, spring) / body.
mass) * (dt / 2)
body.pos += body.vel x dt
systCopy = copy.deepcopy (syst)
for body in syst:
body.vel += (forceOn(body, systCopy, spring) / body.
mass) * (dt / 2)

tao(syst, spring, dt):
"""One step for the system wusing Molei Taos method """

omega = 7 #Parameter in molei taos method

systCopy = copy.deepcopy (syst)
for body in syst:
body.vel += (forceOn(body, systCopy, spring,
extendedMomentum = True) / body.mass) % (dt / 2)

34

body.pos2 += vel nonsep(body, systCopy, spring, extended
= True) * dt / 2

systCopy = copy.deepcopy (syst)
for body in syst:
body.vel2 += (forceOn (body, systCopy, spring,
extendedPosition = True) / body.mass) * (dt / 2)
body.pos += vel nonsep(body, systCopy, spring) * dt / 2

for body in syst:

q = body.pos #position in "reel” system

p = body.vel x body.mass #momentum in "reel” system

x = body.pos2 #position in "cloned”
system

y = body.vel2 x body.mass #momentum in "cloned”
system

body.pos = (¢ + x + np.cos(2 % omega x dt) * (q — x
) + np.sin(2 % omega x dt) x (p—y)) / 2

body.vel = (p + y + np.cos(2 % omega x dt) * (p — ¥y
) — np.sin(2 % omega x dt) x (q—x)) / (2 x
body . mass)

body.pos2 = (q + x — np.cos(2 % omega *x dt) *x (q — x
) — np.sin(2 % omega x dt) x (p—y)) / 2

body.vel2 = (p + y — np.cos(2 % omega x dt) * (p — ¥y
) + np.sin(2 % omega * dt) x ((q—x)) / (2 %
body . mass)

systCopy = copy.deepcopy (syst)
for body in syst:
body.vel2 += (forceOn (body, systCopy, spring,
extendedPosition = True) / body.mass) x (dt / 2)
body.pos += vel nonsep(body, systCopy, spring) *x dt / 2
systCopy = copy.deepcopy (syst)
for body in syst:
body.vel += (forceOn(body, systCopy, spring,
extendedMomentum = True) / body.mass) x (dt / 2)
body.pos2 += vel nonsep(body, systCopy, spring, extended
= True) *x dt / 2

def tao4(syst, spring, dt):

nmnnnn

gamma 4 = 1/(2 — 2xx(1/5))
tao(syst, spring, dt * gamma 4)

35

tao(syst, spring, dt *x (1—2xgamma 4))
tao(syst, spring, dt % (gamma 4))

Y

def plotEnergy(dt, numsteps, separable = False, Integrator =
Tao’, plot = ’Energy’):
"M Peforms one simulation and plots energy
#0ur particles
system = [Body(’partl’, 2.0, 3.0, 0.25), Body(' 'part2’, 2.0,

ninn

2.0, —0.25)]
#0ur spring
spring = Spring (1, 2, separable, 0.5) #Spring (self ,

equilibrium , springConstant, separable, modelKonstant)
#The initial energy
realenergy = potentialEnergy (system, spring) + kineticEnergy

(system)
#Distance betwen the particles
dist = | |
#Velocity of particle 172272
vel = | |
#FEnergies
poten = | |
kinen = | |
toten = | |
#Error of total energy
enerror = | |
#Time
time = | |

for i in range(numsteps):

if Integrator =— ’'Runge—Kutta_4":
RK4(system , spring, dt)
elif Integrator = ’Verlet :

verlet (system, spring, dt)
elif Integrator = ’Tao’:

tao(system, spring, dt)
elif Integrator — ’'Tao_4":

tao4 (system, spring, dt)

#Append to wvectors for plots

dist .append(system [0].pos — system|[1]. pos)

vel .append(system [0]. vel)

poten.append(potentialEnergy (system, spring))
kinen.append(kineticEnergy (system))

36

toten .append(potentialEnergy (system, spring) +
kineticEnergy (system))

enerror.append((potentialEnergy (system, spring) +
kineticEnergy (system) — realenergy) / realenergy)

time . append (ixdt)

if plot = ’Energy’:
plt.plot(time, toten, label = 'Total_energy’)
plt.plot (time, poten, label = 'Potential_energy’)
plt.plot (time, kinen, label = ’Kinetic_energy’)

plt.grid (b = True)
plt.ylabel (’Energy’)

if plot = ’"Total_energy’:
plt.plot (time, toten, label = 'Total_energy’)
plt.ylabel (’Total_energy’)
plt.grid(b = True)
if plot = ’Energy_error ’:
plt.plot (time, enerror, label = ’'Energy_error’)
plt.ylabel (’Energy_error’)
plt.grid(b = True)
plt.title (’Energy_error_’
plt.xlabel (’Time’)
plt .legend (loc = ’best’, prop = {’size’:10})
tikz save(plot + =’ + str(Integrator) + ’=’ + str(dt) + ’dt
—’ + str(dt*numsteps) + 't—’ + str(0.1) + 'beta—'+ str(
spring. b) + “t.tex’)

+ Integrator)

plt .show ()
def plotError(dt, numsteps, separable = False, plot = "Energy_
error ’):
""mPeforms one simulation and plots the error of xenergy or
momentum """
for Integrator in |’Verlet’, 'Runge—Kutta_4’, 'Tao’, 'Tao_4’

|:

#0ur particles

system = [Body(’partl’, 2.0, 3.0, 0.25), Body(' 'part2’,
2.0, 2.0, —0.25)]

#0ur spring

spring = Spring (1, 2, separable, 0.5) #Spring (self
equilibrium , springConstant, separable, modelKonstant

)

#The initial energy

37

realenergy = potentialEnergy (system, spring) +
kineticEnergy (system)

#Error of total energy

enerror = | |

#Momentum energy

momErr = | |

#Time

time = | |

for i in range(numsteps):

if Integrator =— ’'Runge—Kutta_4":
RK4(system , spring, dt)
elif Integrator = ’Verlet :
verlet (system , spring, dt)
elif Integrator = 'Tao’:
tao(system , spring, dt)
elif Integrator = ’'Tao_4":

tao4d (system, spring, dt)

#Append to wvectors for plots

enerror.append((potentialEnergy (system, spring) +
kineticEnergy (system) — realenergy) / realenergy)

momErr. append (system [0]. vel % system [0].mass +
system [1].vel % system |[1].mass)

time . append (ixdt)

if plot = ’Energy_error’
plt.plot (time, enerror, label = Integrator)
if plot =— 'Momentum_error ’:

plt.plot (time, momErr, label = Integrator)

plt.title (plot)

plt.grid (b = True)

plt.xlabel (’Time")

plt.ylabel(plot)

plt .legend (loc = ’best’, prop = {’size’:10})

tikz _save(’SpringMomentumError’ + =’ + str(dt) + 'dt—’ +
str(spring. b) + ’'beta—" + ’t.tex’)

plt .show ()

#plotEnergy(0.01, 1000, separable = False, Integrator = ’Tao
4’7, plot = ’"Energy’) #plotEnergy(dt, numsteps, separable =
False, Integrator = ’Tao’, plot = ’'Energy’)

38

#plotError(0.01, 10000, separable = False, plot = ’'Energy error

") #plotError(dt, numsteps, separable = False, plot =
Energy error’)

5.2. Lennard-Jones simulation

import math

import matplotlib

import matplotlib.pyplot as plt

import numpy as np

from matplotlib import animation

import random as rnd

import seaborn as sns

from mpl toolkits. mplot3d import Axes3D as p3
from matplotlib import rc

from matplotlib2tikz import save as tikz save
from IPython.display import HIML

import random as rnd

import copy

from numba import jit

class Body:

Y

"M Particle with mass, position , velocity and acceleration

ninn

def init (self, name, mass, pos, vel):
self .name = name #Name
self .mass = mass #Mass
self.pos = pos #Position wvector
self .vel = vel #Velosity vector

#FExtended system
self.pos2 = pos
self .vel2 = vel

class System:
"""Particles in a box with periodic boundery conditions

interaction wvia the Lennard—Jones potential """
def init (self, bodies, boxSize):

self.bodies = bodies #List of all particles
self . boxSize = boxSize #The size of the box
#

self. beta = 0.1

Qjit

def epsilon (self , extended = False):
""" Returns epsilon of T"""

39

epsilon0 = 0.5 #FEpsilon at T = 0
T =20 #Temperature
for body in self.bodies:
if not extended:
momentum = body.vel x body.mass
elif extended:
momentum = body.vel2 x body.mass
T 4= np.sqrt(np.sum(momentum * momentum)) / (2
% body.mass * len(self.bodies))
return epsilon0 * np.exp(— self. beta x T)

def vel nonsep(self, body, extended = False):
"I Returnerar hamiltonianen deriverad med avsende pa
partikelns rorelsemdangd dvs dH/dp"""
"I Returns the Hamiltonian derived with respect to
momentum """
if not extended: #We want dH(z, p)/dp
return body.vel * (1 — self. beta * self.
potentialEnergy (extendedPosition = True,
extendedMomentum = False))
elif extended: #We want dH(q, y)/dy
return body.vel2 x (1 — self. beta x self.
potentialEnergy (extendedPosition = False ,
extendedMomentum = True))

Q@jit
def potentialEnergy(self, extendedPosition = False
extendedMomentum = False):
""" Returns the Lennard—Jones potential of the system"""
poten = 0

for i in range(len(self.bodies)):
for j in range(i):
7
if not extendedPosition:
distVec = shortestDist(self.bodies|[i].pos,
self.bodies|j].pos, self.boxSize)
if extendedPosition:
distVec = shortestDist (self.bodies|[i].pos2,
self.bodies|j].pos2, self.boxSize)
normDist = np.sqrt(np.sum(distVecxdistVec))
7
if not extendedMomentum:
epsilon = self.epsilon ()
if extendedMomentum:
epsilon = self.epsilon (extended = True)

40

#

if normDist < 2.5:

poten = poten + 4 x epsilon % (normDist
x%(—12) — normDist*x(—6)) #FEpsilon = 1,
sigma = 1

return poten

Qjit
def kineticEnergy(self):
" Calculates and returns the kinetic energy of the

SyStem ninn
kinen = 0
for elem in self.bodies:
velocitySq = np.sum(elem.vel % elem.vel)

kinen += velocitySq * elem.mass / 2
return kinen

Qjit
def shortestDist (positionl , position2, boxSize):
" Calculates and returns the shortest distance wvector
between two particles""’
distVec = np.array ([1,1,1])*boxSize
normDist = np.sqrt (np.sum(distVec*distVec))
for i in [—1, 0, 1]:
for j in [—1, 0, 1]:
for k in [—1, 0, 1]:

newpos2 = position2 + boxSize % np.array ([i, j,
kJ)

newdistVec = positionl — newpos2

newnormDist = np.sqrt (np.sum(newdistVecsx

newdistVec))
if newnormDist < normDist:
distVec = newdistVec
normDist = np.sqrt (np.sum(newdistVecx
newdistVec))
return distVec

Q@jit
def forceOn(body, syst, extended = False):
""" Returns the force on a particle"""
force = np.array ([0, 0, 0])
for elem in syst.bodies:
if body.name != elem .name:
if not extended:

#We want dH(q, y)/dq dvs

41

distVec = shortestDist (body.pos, elem.pos, syst
.boxSize)
epsilon = syst.epsilon(extended = True)
elif extended:
#We want dH(z, p)/dz
distVec = shortestDist (body.pos2, elem.pos2,
syst.boxSize)
epsilon = syst.epsilon ()
normDist = np.sqrt (np.sum(distVecxdistVec))
if normDist < syst.boxSize / 2: #Cut off
force = force + 24 x epsilon *x (2 * normDist
x%(—14) — normDist*x(—8)) * distVec #Sigma
=1
return force

def initCond (boxSize , numElem) :

"""Restuns an instans of the Syst method with initial
conditions """

#Hastigheterna , ser till att masscentrum inte ror sig

np .random . seed (0)

velocities = | 2#np.random.random sample(size=3) — 1 for i
in range(numElem) |

totalvel = np.array ({0,0,0])

for vel in velocities:
totalvel = totalvel + vel

velocities = | velocities|[i| — totalvel / numElem for i in
range (numElem) |

#Positions , ser till att partiklarna inte bérjar for ndra

varandra ,
positions = | |
while len(positions) < numElem:
isgood = True
newpos = boxSize * np.random.random sample(size=3)

for pos in positions:
distVec = shortestDist (pos, newpos, boxSize)
dist = np.sqrt(np.sum(distVec * distVec))
if dist < 1:
isgood = False
break
if isgood:
positions.append (newpos)
bodies = [Body(’'Particle’ + str(i), 4, positions|[i],
velocities|[i]) for i in range(numElem) |

42

def

def

#bodies = [Body(’partl’, 1, np.array([2, 5, 0]), np.array
([3, 0, 0])), Body(’'part2’, 1, np.array([8, 5, 0]), np.
array([—3, 0. 0]))]

#0ur system

return System (bodies, boxSize)

verlet (syst, dt):
"""One step for wusing wverlet""’
systCopy = copy.deepcopy (syst)
for body in syst.bodies:
body.vel = body.vel + (forceOn(body, systCopy) / body.
mass) x (dt / 2)
body.pos = body.pos + body.vel x dt
systCopy = copy.deepcopy (syst)
for body in syst.bodies:
body.vel = body.vel + (forceOn(body, systCopy) / body.
mass) x (dt / 2)

tao(syst, dt, i):
"""One step for one particle using Moleir Taos method"""

omega = 1 #Binding parameter in Molet Taos method

systCopy = copy.deepcopy (syst)
for body in syst.bodies:
body.vel = body.vel + (forceOn(body, syst, extended =
False) / body.mass) % (dt / 2)
body.pos2 = body.pos2 + syst.vel nonsep(body, extended
= True) * dt / 2
systCopy = copy.deepcopy (syst)
for body in syst.bodies:
body.vel2 = body.vel2 + (forceOn(body, syst, extended =
True) / body.mass) x (dt / 2)
body.pos = body.pos + syst.vel nonsep(body, extended =
False) * dt / 2

for body in syst.bodies:
q = body.pos
p = body.vel % body.mass
x = body.pos2
y = body.vel2 % body.mass
body.pos = (q + x + np.cos(2 % omega x dt) * (q — x
in(2 % omega * dt) «x ((p—y)) / 2

43

def

body.vel = ((p + y + np.cos(2 % omega * dt)
(2 x

* (p -
omega * dt) x ((q—x)) / 2)

body . mass

body.pos2 = (¢ + x — np.cos(2 % omega x dt) *x (q —
) — np.sin(2 % omega x dt) x (p—y)) / 2
body.vel2 = ((p + y — np.cos(2 % omega x dt) * (
y) + np.sin(2 % omega x dt) x ((q—x)) / 2

p —
)
body . mass

systCopy = copy.deepcopy (syst)
for body in syst.bodies:
body.vel2 = body.vel2 + (forceOn(body, syst, extended
True) / body.mass) x (dt / 2)
body.pos = body.pos + syst.vel nonsep(body, extended =
False) x dt / 2
systCopy = copy.deepcopy (syst)
for body in syst.bodies:
body.vel = body.vel + (forceOn(body, syst, extended =
False) / body.mass) % (dt / 2)
body.pos2 = body.pos2 + syst.vel nonsep(body, extended
True) =+ dt / 2

main (boxSize , numElem, dt, endtime):

" Performs one simulation """

#Timestep

numsteps = int (endtime/dt)

#0ur system

system = initCond (boxSize, numkElem)

#Initial energy

initEn = system.potentialEnergy () + system.kineticEnergy ()
#Stores the x, y, & z positions for all particles

x = | |] for body in system.bodies |
y = | |] for body in system.bodies |
z = | | | for body in system.bodies |
#Stores the energies of the system
poten = | |

kinen = | |

toten = | |

###THIS CREATES FIGURES/##+#

#Creates the figure for 3D animation

fig = plt.figure(figsize=(10, 10))

ax = fig.add subplot (121, projection="3d")
ax.set xlim (0, boxSize)

ax.set ylim (0, boxSize)

44

ax.set_zlim (0, boxSize)
ax.set xlabel (’X_axis’)
ax.set ylabel(’Y_axis’)
ax.set zlabel(’Z_axis’)
#Create figure for energy plot
energy = fig.add subplot(122, label = "Energy")
energy .set xlim (0, endtime)
if 1.5 % initEn < 2.5:

energy.set ylim(— 0.4 % initEn, 2.5)
else:

energy.set ylim(— 0.4 % initEn, 1.5 % initEn)
energy .set xlabel(’Time’)
energy .set ylabel(’Energy’)
#4THIS STORES SOMETHING#/4#
#Stores time

)

time = | |

#For the 3D plot

lines = | ax.plot ([],[],[], =, alpha=0.5, ¢ = 'r’)|[0] for
i in range(numElem) |

pts = [ax.plot ([|,[].[], '0o’, ¢ = "r’)[0] for i in range(

numElem) |
#For the energy plot

energies = | energy.plot ([|], [])[0] for i in range(3) | #
energies = [potential energy, kinetic energy, total
energy |

def init ():

ninn ninn

skapar férsta bilden
for line, pt in zip(lines, pts):

line.set data([], [])
line.set 3d properties ([])
pt.set data([], [])

pt.set 3d_ properties ([])
for energy in energies:

energy .set data ([|, [])
return lines + pts + energies

def animate(i):

for body in system.bodies:
#Moves the particles one step forward
RK4step sepLJ(body, system, dt)
#tao _sep(body, system , dt)

for body in system.bodies:
#Moves particles back in the box
body.pos = body.pos % boxSize

45

def

)

for

for

body.pos2 = body.pos2 % boxSize

j in range(len(system.bodies)):
#Append positions to positionvector
x|j].append(system.bodies|j]|.pos|[0])
y|j]-append(system.bodies|[j]|.pos|[1])
z|j|.append(system.bodies|j].pos|[2])
j in range(len (system.bodies)):
#Plots all previous positions as lines
lines [j].set data(x|[j], y[il])

lines [j].set_3d_properties(z|[]])
#plots current positions as dots
pts[j].set_data(x[j][=1], y[Jl[—1])
pts|j|.set 3d properties(z|j][—1])

#Appends time and energies
poten.append(system.potentialEnergy ())
kinen .append(system.kineticEnergy ())
toten.append(system.potentialEnergy () + system.

kineticEnergy ())

time.append(1 x dt)

#Plots the emnergies

energies [0].set_data(time, poten)
energies [1]|.set data(time, kinen)
energies [2].set_data(time, toten)
return lines + pts + energies

anim = animation.FuncAnimation(fig , animate, init func =
init ,
frames = numsteps, interval
=50, blit=True, repeat=
False)
plt .show ()
plotEnergy (boxSize , numElem, dt, endtime, integrator = "Tao"

"M Plots energy

ninn

#Number of steps
numsteps
#0ur system

system = initCond (boxSize , numElem)

#Stores the potential , kinetic and toatal energy

poten
kinen
toten

= int (endtime /dt)

#Stores time
time = | |

46

#Initial energy, not used at the moment
initEn = system.potentialEnergy () + system.kineticEnergy ()
for i in range(numsteps):
if i % int(0.1/dt) = 0:
print (ixdt)
if integrator =— "Verlet":
#Mowves all particles forward one timestep using
verlocity Verlet
verlet (system , dt)
elif integrator = "Tao":
#Mowves all particles forward one timestep using Tao
tao (system, dt, i)
for body in system.bodies:
#Moves all particles back in the box
body . pos = body.pos % boxSize
body . pos2 = body.pos2 % boxSize
#Append energies and time
poten.append(system.potentialEnergy ())
kinen .append(system.kineticEnergy ())
toten .append(system.potentialEnergy () + system.
kineticEnergy ())
time.append(i * dt)
##Need for plots

plt.plot (time, toten, label = "Total_energy’, linewidth = 2)

plt.plot (time, poten, label = 'Potential_energy’, linewidth

plt.plot (time, kinen, label = ’'Kinetic_energy’, linewidth =
2)

plt.legend (loc = ’'best’, prop = {’'size’ :12})

plt .show ()

47

	Introduction
	Background Material
	Molecular dynamics
	Introduction
	Hamiltonian systems
	Separable and non-separable Hamiltonians
	Periodic boundary conditions
	Conserved quantities

	Symplectic integrators and Hamiltonian mechanics
	Introduction
	Phase space
	Symplectic transformations
	Properties of symplectic maps in Hamiltonian mechanics
	Integrators and symplectic maps
	Extended phase space
	Explicit and implicit integrators
	Note on symplectic integrators for separable Hamiltonians

	The Tao paper

	Investigation
	Problem
	Model and physics
	Kinetic temperature
	Temperature-dependent spring potential
	Temperature-dependent Lennard-Jones

	Simulation
	Temperature-dependent spring constant
	Temperature-dependent Lennard-Jones potential

	Results
	Temperature-dependent spring
	Temperature-dependent Lennard-Jones potential
	General takeaways

	Discussion
	Temperature-dependent spring potential
	Temperature-dependent Lennard-Jones potential
	Selecting the parameter
	Choice of other parameters
	Sensitivity to step size
	Cumbersome implementation
	Numerical speed

	Summary and Conclusions
	Temperature-dependent spring potential
	Temperature-dependent Lennard-Jones potential

	Appendix 1: Python code used in the simulations
	Temperature-dependent spring simulation
	Lennard-Jones simulation

